博客
关于我
数据分析师的30种死法
阅读量:712 次
发布时间:2019-03-21

本文共 728 字,大约阅读时间需要 2 分钟。

数据分析的场景确实充满了各种坑和坷,作为一名数据分析师,我深深体会到了以下这些瞬间。

在数据项目开发过程中,数据获取总是最头疼的事。我们一次步骤一步地来:首先发现丢失关键数据,整体项目就卡住了,数据无从谈起。 разработ小同志也很拼命地去帮忙取数,但最终还是出现了很多棘手的问题。

要么是数据项不全,需要耗时排期;要么就是调研过程中一直掐击开发小同志,结果发现重要数据项遗漏,场面一度十分尴尬。拿到完整数据后,我们又遇到了打开Excel的困扰。当数据量达到百万级别,Excel脚本竟然不堪重负,直接把我们打胸脯。

随后我们转向数据库处理,导入MySQL后,每个简单的连接操作都要花费漫长时间。为了解决这个问题,我们试图建立索引,这一举动虽加快了操作速度,但也暴露了一个隐藏的问题——存储过程里的字段名写错了,结果误删了整体流程的数据。

重新开始之后,我们遇到了另一个问题:统计报表的异常值。此时发展成了"数据清洗"的仪式感,但纯然再次发现谁能预料数据的精密程度。为了彻底解决问题,我们一直排查到开发小同志发现原来是从一开始就取错了数据。

最终在经过反复核实,机制层面上的问题也被查明。正当我们准备大刀阔斧解决问题时,领导突然来 PX:数据分析结果还不够标准化,转而需要我们形成一个统一的分析模板。

系统的撰写过程极度考验耐心。一边要跟开发小同志协作把数据模块完善,另一遍又要满足BOSS对分析结果呈现的各种要求。思考过程中整天熬夜加班,脑力和体力双双下降。

面对各种问题被打回,大家不得不反复修改报告,既要满足技术性又要符合业务需求,最终我们实现了某种自动化的分析流程。

这个过程教会我们,小细节决定成败,在数据分析工作中发现问题并及时解决尤为重要。

转载地址:http://hwrez.baihongyu.com/

你可能感兴趣的文章
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>